
Population code in mouse V1 facilitates read-out of natural 
scenes through increased sparseness

Emmanouil Froudarakis1, Philipp Berens1,2,3,*, Alexander S. Ecker1,2,3,4, R. James Cotton1, 
Fabian H. Sinz2,5, Dimitri Yatsenko1, Peter Saggau1,6, Matthias Bethge2,3,4, and Andreas S. 
Tolias1,2,7,*

1Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA

2Bernstein Center for Computational Neuroscience, Tübingen, Germany

3Werner-Reichardt-Center for Integrative Neuroscience and Institute for Theoretical Physics, 
University of Tübingen, Germany

4Max Planck Institute for Biological Cybernetics, Tübingen, Germany

5Institute for Neurobiology, Department for Neuroethology, University Tübingen, Germany

6Department of Bioengineering, Rice University, Houston, TX, USA

7Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA

Abstract

The neural code is believed to have adapted to the statistical properties of the natural environment. 

However, the principles that govern the organization of ensemble activity in the visual cortex 

during natural visual input are unknown. We recorded populations of up to 500 neurons in the 

mouse primary visual cortex and characterized the structure of their activity, comparing responses 

to natural movies with those to control stimuli. We found that higher-order correlations in natural 

scenes induce a sparser code, in which information is encoded by reliable activation of a smaller 

set of neurons and can be read-out more easily. This computationally advantageous encoding for 

natural scenes was state-dependent and apparent only in anesthetized and active awake animals, 

but not during quiet wakefulness. Our results argue for a functional benefit of sparsification that 

could be a general principle governing the structure of the population activity throughout cortical 

microcircuits.
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Introduction

Neurons in the early visual system are believed to have adapted to the statistical properties 

of the organism’s natural environment1–3. In particular, the response properties of neurons in 

the primary visual cortex are hypothesized to be optimized to provide a sparse representation 

of natural scenes: Theoretical work suggests that neural networks optimized for sparseness 

yield receptive fields similar to those observed in primary visual cortex (V1)3–5. In the 

resulting population code, only a small subset of the neurons should be active to encode 

each image and neural responses should be sparser for natural scenes than for stimuli from 

which the critical higher-order correlations have been removed6. These higher order-

correlations are reflected in the phase spectrum of a scene (as opposed to the amplitude 

spectrum) and drive the emergence of localized oriented bandpass filters resembling V1 

receptive fields in sparse coding models4. In addition, they carry the perceptually relevant 

content of an image3,7.

Indeed, single neurons in V1 respond highly selectively to image sequences as they occur 

during natural vision, showing high lifetime sparseness8–12 (but see13). In addition, identical 

visual features activate complex cells more strongly when embedded in a natural scene 

compared to a noise stimulus without spatial structure14. However, sparseness in single 

neurons does not guarantee sparseness in a population10. For example, consider a local 

population of neurons tuned to diverse stimulus features becoming more selectively tuned to 

one particular stimulus due to learning. These neurons will exhibit high lifetime sparseness. 

However, since all neurons will become similarly tuned, population sparseness will 

decrease. Until recently, it has not been possible to record from sufficiently large and dense 

neuronal populations in order to empirically study the representation of natural scenes on the 

population level and measure the effect of natural stimulus statistics on properties such as 

population sparseness.

Despite the intriguing theoretical ideas and experimental advances15, it is thus still unclear 

whether and how the response properties of V1 neurons have adapted to the statistical 

regularities of natural scenes and whether this optimized representation has functional or 

computational benefits. Here, we use a novel high-speed 3D in vivo two-photon 

microscope16 to record the activity of nearly all of the hundreds of neurons in small volumes 

of the visual cortex of anesthetized and awake mice. The animals viewed natural movies and 

phase-scrambled movies. The latter were generated from natural movies by removing the 

higher-order correlation structure, resulting in two types of movies with identical power 

spectra but different phase spectra.

We found that higher-order correlations in the visual stimulus indeed change the structure of 

population activity in both anesthetized and awake, active animals: firing patterns are 

reorganized such as to facilitate decoding of individual movie scenes. In particular, we 

provide empirical evidence that sparse encoding of natural stimuli in neural populations 

leads to this improvement in read-out accuracy. This effect could be reproduced by a 

standard linear-nonlinear population model of V1 including a normalization stage. 

Interestingly, during quiet wakefulness, we did not observe the same reorganization, 

suggesting that visual processing of natural scenes in mouse V1 depends on brain state and 
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normalization mechanisms may improve the representation of natural scenes in certain brain 

states, such as when the animal is actively engaged with its sensory environment.

Results

To study how neural populations in V1 encode natural scenes we recorded stimuli matching 

the typical statistics encountered by these neurons., To this end, we mounted a miniature 

camera on the head of a mouse and recorded movies from its point of view, capturing body 

and head movement dynamics (but not eye movements; ‘natural movies’; Fig. 1a and 

Supplementary Movie 1). As we were specifically interested in how the spatio-temporal 

higher-order structure of natural movies impacts V1 population activity, we created a second 

stimulus set, in which we kept the first- and second-order statistics of the natural movies 

intact but randomized all higher-order correlations (‘phase-scrambled movies’; Fig. 1a and 

Supplementary Movie 2). These two movie types had the same spatio-temporal power 

spectrum, but different phase spectra17.

We then recorded the activity of neural ensembles in mouse V1 with up to 510 neurons 

using random-access 3D scanning16 and conventional 2D two-photon calcium imaging18 

(Fig. 1b and Methods) while presenting multiple repetitions of natural and phase-scrambled 

movies. The recorded populations were dense in that we recorded most neurons in a small 

plane or cube of cortical tissue (Fig. 1b, expected 480–640 neurons in a volume of 200 × 

200 × 100 μm in layer 2/3 for 3D scanning19). We verified that we were able to infer the 

spike rates of individual neurons from the fluorescence traces using simultaneous two-

photon imaging and cell-attached recordings of action potentials (Fig. 1c, average linear 

correlation between inferred and true rate: r = 0.79, n = 16 cells). We imaged a total of 492 

sites in 59 anesthetized and 100 sites in 9 awake animals mostly in layer 2/3, allowing us to 

characterize the representation of natural scenes across different cortical states (for details 

on the dataset, see Supplementary Table 1).

Neural populations responded well to both natural and phase-scrambled movies (Fig. 1d and 

Supplementary Fig. 1). Population receptive fields typically covered 25 ± 8° (n=129 sites; 

mean ± SD) of visual angle (Fig. 2a, shown for 16 sites from one exemplary animal). The 

population response was highly reliable even across sites if the locations of their population 

receptive fields matched (Fig. 2b, c; n = 120 pairs of sites, linear correlation coefficient, r=

−0.77; p<0.001). We assessed which features of the natural stimulus were most important 

for driving the neural response. To this end, we predicted the average population response as 

well as single cell responses from the average brightness, the contrast, the kurtosis and the 

overall motion strength within the receptive field (Fig. 2d–g; see Methods for details). This 

model performed reasonably well in predicting population activity for most sites (r2 = 0.15; 

n = 21 sites with at least four movies shown). By analyzing the weights of the model, we 

found that populations were driven most strongly by dark image regions for both classes of 

stimuli (Fig. 2g). Motion strength led to increases in population activity as well (Fig. 2g).

We systematically assessed how higher-order correlations in the stimulus affect V1 

ensemble activity in the output layers 2/3 during anesthesia by comparing neural firing 

statistics between the two stimulus conditions in 500 ms windows (Fig. 3a, b; 
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Supplementary Fig. 2; n = 315 sites). Interestingly, the mean and the variance of the firing 

rate were hardly changed for natural compared to phase-scrambled movies (median change 

and 95% upper/lower CI, mean: 0.23%, −0.37/0.74%; variance: 0%, 0/2.41%). In contrast, 

the signal correlation between pairs of neurons across time was higher during stimulation 

with natural movies (0.47 vs. 0.43 in natural vs. phase scrambled movies; median change 

10.59%; 8.3/12.02%). Also, the neurons responded more reliably in time to the natural 

movies than to phase scrambled ones, as measured by the variance explained by the PSTH 

(0.24 vs. 0.18; 22.52%; 19.74/24.76%), and showed higher lifetime sparseness, responding 

more selectively to individual movie frames (0.35 vs. 0.28; 18.33%; 16.87/20.1%). In 

addition, population sparseness was higher for the natural movies than for the phase 

scrambled ones (0.26 vs. 0.21; 16.4%; 14.93/17.91%). This increase was present across 

almost all recorded sites (293/315 sites; Fig. 3c; two-sided binomial test, p<0.001, n = 315). 

While the absolute level of sparseness depends on the bin width, population sparseness was 

increased for natural compared to phase-scrambled movies at all bin widths and population 

sizes (Supplementary Fig. 3). In addition, population sparseness correlated strongly with 

lifetime sparseness (Supplementary Fig. 4a; r=0.87, p<0.001), as did the differences in the 

two measures between natural and phase-scrambled movies (Supplementary Fig. 4b, linear 

correlation coefficient, r=0.61, p<0.001).

These differences in the population response caused by higher-order correlations in the 

visual stimulus were not restricted to the output layer 2/3 of V1: Reliability, lifetime 

sparseness and population sparseness also increased in the input layer 4 of V1 (n = 46 sites) 

and in the layer 2/3 of the secondary visual areas LM and AL (n = 117 sites; Fig. 3b). 

Interestingly, the average activity in areas LM and AL increased for natural stimuli. In 

addition, we verified that the observed effects were not related to the imaging method (2D or 

3D imaging; all V1 data: n = 332 and n = 30 sites, respectively; Fig. 3d) and compared the 

results from calcium imaging to spikes, recording their spiking activity of single cells 

directly while presenting the movies (n = 29 cells). We found that all single-neuron 

measures agreed between spiking and calcium data (Fig. 3d; overlapping 95%-CIs). Finally, 

as our stimulus movies did not contain eye movements and eye movements contribute to 

shaping the response reliability of V1 neurons20, we performed additional experiments using 

two virtual reality movies including rodent eye movements21. We found that most effects 

were compatible with those obtained from our original dataset (n = 13 sites; Supplementary 

Fig. 5; see Methods).

Next, we studied how the changes in the neural representation affected the encoding of 

natural and phase-scrambled movies. For this analysis, we pooled all anesthetized data from 

V1 (n = 362 sites). Specifically, we tested how well movie scenes could be discriminated 

based on the population activity in a 500-ms window. Using a simple linear classifier, we 

found that the discriminability was higher for scenes from natural movies than for scenes 

from phase-scrambled movies (0.25 vs. 0.19 bits; change: 24.22%; 95%-CI: 22.11/26.35%; 

Fig. 4a). To identify which of the differences in the population response best predicted this 

enhanced discriminability, we performed a multivariate linear regression analysis (r2 = 0.73; 

see Methods). Population sparseness was the best predictor of classification performance, 

followed by reliability and lifetime sparseness (Fig. 4b). We verified that this result was 

largely insensitive to the time bin size, the decoding algorithm, the regression technique and 
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the sparseness measure (Supplementary Table 2). Reliability was also an influential factor in 

most of these control analyses, in particular for short time bins and without trial averaging.

We studied the link between population sparseness and discrimination performance in more 

detail by looking at the structure of the neural response space. using locally linear 

embedding22. This dimensionality reduction technique preserves local neighborhood 

relationships of the high-dimensional space while embedding the data points into a low-

dimensional space (see Methods). We observed that the representations elicited by natural 

movies spread out more than those of phase-scrambled movies (Fig. 4c). We quantified this 

effect by measuring how far the population response vectors spread out in the neural space 

(measured by their spherical variance, see Methods). We found that neural responses to the 

natural stimuli were distributed more (0.13 vs. 0.10; 18.25%; 16.46/20.02%), and that this 

increased spread was highly correlated with increased population sparseness (Fig. 4d, r = 

0.98, p = 0.001). Indeed, population sparseness is proportional to the average sine squared of 

the angle between the representations of different scenes and the main diagonal (Fig. 4e; see 

Methods). We studied whether this increased spread in the neural space is a straightforward 

consequence of differences between the two conditions in the stimulus space. While the 

distance between natural movie frames is somewhat larger than the distance between frames 

from phase scrambled movies (~ 10% measured in pixel space), a large distance between 

two movie frames does not lead to a large distance in the neural response space: both 

measures were only weakly correlated (Spearman’s r = 0.05 and r = 0.03 for natural and 

phase scrambled stimuli, respectively; evaluated for pixels within the population receptive 

field). Thus, discriminability increases with population sparseness because of a nonlinear 

transformation through which the activity vectors in the sparser representation “fan out” in 

the neural space.

We next asked what ingredients a simple model of V1 needs to reproduce these results. We 

started with a model population consisting of linear-nonlinear Poisson (LNP) neurons, 

where the linear stage consists of filters learned by a sparse coding model23 and the non-

linearity was a static half-wave rectification function (Model 1, Fig. 5a). In this simple 

model, sparseness was higher for natural scenes compared to phase-scrambled ones, but, at 

the same time, the mean response was significantly lower (Fig. 5b and Supplementary Fig. 

6a, d). As a consequence, phase-scrambled images could be classified better under this 

model, in contrast to what we observed in the neural data (Fig. 5B and Supplementary Fig. 

6a,d). Thus, a simple LNP population with static non-linearity seems not compatible with 

our anesthetized data. We therefore added an adaptive non-linearity24 to match the average 

responses between the two conditions (Fig. 5a, Model 2) or a normalization stage, where a 

“surround” pool of neurons divisively affects the activity of each neuron (Fig. 5a, Model 3). 

These models qualitatively reproduced the experimental results (Fig. 5b and Supplementary 

Fig. 6b–d). In summary, a non-linearity rapidly adapting to the statistics of the visual 

stimulus20,24 or divisive normalization, which is commonly employed in cortical 

computations25, seems to be required for a sparse population representation with high 

discriminability of natural scenes.

To understand how neural responses to natural movies depend on the brain state, we 

repeated the same experiment in awake mice (n = 9 animals). We monitored eye 
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movements, running and whisking activity of the animals and separated the recordings into 

‘active’ periods, where the animal was whisking and/or running (n = 23 sites; 

Supplementary Fig. 7; see Methods for inclusion criteria), and ‘quiet wakefulness’, when the 

animal was sitting still and not whisking (n = 100 sites; Supplementary Fig. 7). During 

active wakefulness higher-order correlations in the stimulus influenced the response 

statistics in a manner very similar to the anesthetized state (Fig. 6a, b; overlapping 95%-

confidence intervals for all measures between both states). In particular, discriminability for 

natural scenes was improved over phase-scrambled scenes in many sites (Fig. 6b, c; 19/27 

sites, two-sided binomial test, P < 0.05) and differences in population sparseness were an 

important predictor of differences in discriminability (Fig. 6d and Supplementary Table 2). 

During quiet wakefulness, however, the mean activity and thus the discriminability were 

lower for natural movies than for phase-scrambled ones (Fig. 6a–c). Also, the differences in 

mean activity were the best predictor for differences in discriminability (Fig. 6d and 

Supplementary Table 2).

Discussion

We showed that higher-order correlations in natural movies change the structure of the firing 

patterns in V1 during anesthesia and during active wakefulness without changing the overall 

activation level, in particular increasing the population sparseness of the neuronal 

representation. This increased sparseness leads to an improvement of the discriminability of 

different movie scenes, arguing for a computational benefit of population sparseness. During 

quiet wakefulness, the mean activity was lower for natural movies than for phase scrambled 

ones and discriminability was not improved. Together with our modeling work, these results 

indicate that processing of natural scenes in mouse V1 depends on cortical state, with 

normalization mechanisms improving the representation of natural scenes when the animal 

is actively engaged with its sensory environment.

Relationship to previous studies

Our results are agree with previous single unit studies of natural scenes showing that 

responses of single neurons in V1 of cats and monkeys show high lifetime sparseness and 

reliability8–12. In our experiments, the movies covered the receptive fields and its surround 

(Fig. 2a). The surround circuitry likely contributes to the computations underlying the high 

sparseness and discriminability levels observed during stimulation with natural movies8,26. 

We found that dark image regions lead to highest population activity, in agreement with the 

dark dominance reported in layers 2/3 of macaque V127. Our results are also compatible 

with an imaging study recording neural populations of about 80 neurons in mouse V1 

showing two natural and two highly artificial movies15. It found that ~25% of the neurons 

are reliably activated by each stimulus and that stimulus identity could be read out with high 

accuracy. However, its experimental design did not allow the authors to relate their findings 

to specific statistical properties of the natural stimuli. Finally, our results agree with a recent 

study which found no systematic difference in firing rates between phase-scrambled and 

natural movies of neurons in V1 but did find a difference in V2 of anesthetized monkeys17, 

as present in our data (Fig. 3b). This suggests that there are specific changes in the 
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organization of the population activity in V1, such as increased population sparseness, that 

could lead to neurons in V2 having higher firing rates for natural scenes.

State dependence of neural processing in mouse V1

We found that the population representation of natural movies was highly state-dependent in 

awake animals. This seems to be a general feature of visual processing in the primary visual 

cortex of mice. For example, firing rates are higher during running than during quiet 

wakefulness28,29 when stimulated with oriented gratings. In addition, activity during running 

resembles activity under anesthesia28, in agreement with our data (Fig. 6). In contrast, 

neurons appear “visually detached” during quiet wakefulness28 and visual performance is 

lower30. Interestingly, the origins of this state dependence seem to lie in the cortex, as 

responses in LGN do not differ strongly between active and quiet wakefulness28. In the 

context of our models, it seems like a normalization stage as commonly found in cortical 

circuits acts to balance the mean activity between the movie types during anesthesia and 

active wakefulness. During quiet wakefulness, in contrast, the structure of the population 

response agreed better with a purely static linear-nonlinear model of V1.

Implications for models of V1

Most theoretical studies relating natural image statistics to response properties of V1 have 

modeled the neurons as linear rate-based units without spike generation mechanims4,5. 

Recent theoretical studies highlight the role of normalization for removing contrast-

correlations31,32, which are one of the main sources of higher-order correlations in natural 

images. This view is supported by our data, where a normalization step is needed to 

qualitatively reproduce the finding that the average activity is closely matched between 

natural and phase scrambled movies, yet population sparseness and discriminability are 

increased for natural movies. In hierarchical sparse coding networks, such nonlinearities 

could be used to make higher-order correlations explicit by transferring them into second-

order correlations. This process would make the information carried by these higher-order 

correlations easier to read-out by subsequent processing stages. Note, however, that our 

models are highly simplified versions of cortical processing and the precise effect size for 

the models depends to some extent on the parameter settings. Therefore, we refrained from 

more detailed quantitative comparisons. To obtain a more precise link between sparse 

coding models and neural data, it may be useful to study models with a higher degree of 

biological accuracy including spiking neurons and local learning33.

In addition, our data does not provide evidence for sparse coding per se: our measurements 

do not allow us to determine the absolute level of sparseness due to its dependence on the 

size of the time bins and two-photon imaging parameters. In addition, we and others15 

observed fairly high levels of signal correlations in our data. Whether these signal 

correlations reflect the true response similarity of the neurons is not clear since measuring 

signal correlations with two-photon imaging is quite sensitive to correlated imaging noise 

e.g. from cardiac or respiratory cycles16. Some authors have tried to remove this correlated 

noise by projecting out the first principle component of the population response and 

obtained lower estimates of signal correlation34. To what degree this procedure removes 

correlated signal as well is an open question. Another study found lower correlations using 
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highly decorrelated receptive field mapping stimuli35. If our measurements reflect the signal 

correlations generated by the neural circuit under natural stimulation conditions, they speak 

against conventional interpretation of sparse coding models.

While our study therefore does not rule out the possibility that the population code in V1 is 

relatively dense, it establishes, however, that a relative increase in population sparseness 

greatly increases the discriminability of natural scenes by ‘fanning out’ their representation 

in neural space. This relationship is not a straightforward consequence of mathematical 

identities: beyond a certain point, increasing sparseness will impair classification 

performance36,37. Theoretical studies have argued for different functional advantages of 

sparse coding38, for instance that they enable efficient memory storage, are energy-efficient 

or make the structure of the sensory input signal explicit. Interestingly, sparseness seems an 

important objective for learning image representation useful for image discrimination, but 

enforcing sparseness during the encoding of images does not seem advantageous37. How the 

increase in discriminability and its relationship to sparseness we observed is mathematically 

related to the diverse theoretical proposals will therefore be an important direction for future 

research.

Methods

Animal preparation

We used both male and female mice (62 and 6 mice respectively, age: p22 to p185) of either 

the C57CL/6J wild type strain (54 mice) or heterozygous for either the SST-Cre, PV-Cre or 

Viaat-Cre genes and heterozygous for the Ai9 reporter gene (5, 5 and 4 mice respectively). 

Mice were initially anesthetized with Isoflurane (3%) and for the anesthetized experiments 

anesthesia was maintained by either Isoflurane (2%, 4 mice) or a mixture of Fentanyl (0.05 

mg/kg), Midazolam (5 mg/kg), and Medetomidin (0.5 mg/kg) with anesthesia boosts 

consisting half of the initial dose every three hours (48 mice). The temperature of the mouse 

was maintained between 36.5°C and 37.5°C using a homeothermic blanket system (Harvard 

Instruments). In some experiments we applied eye oil ointment (polydimethylsiloxane) to 

prevent dehydration of the cornea. In the surgical procedure part of the skin over the skull 

was resected and the location of the craniotomy determined (approximately 2.5–2.9 mm 

lateral to the mid-line sagittal suture and anterior to the Lambda suture). A head-post bar 

was secured to the skull using bone cement and then a 0.5–1.5 mm craniotomy was 

performed over the region of interest. The mouse was transferred to either a traditional 

galvanometric imaging system with a 10x objective (Nikon CFI Plan Apo 10×), or a custom 

epi-fluorescence stereoscope, for guided injections of the membrane-permeable calcium 

indicator Oregon green 488 BAPTA-1 AM (OGB-1, Invitrogen) and in some experiments 

the astrocyte specific fluorescent dye sulforhodamine 101 (SR-101, Invitrogen). Dye 

solution was prepared as previously described18 and bolus loading injections were 

performed by using a continuous-pulse low pressure protocol with a glass micropipette and a 

computer controlled pressure system (Picospritzer II, Parker) to inject ~ 300 μm below the 

surface of the cortex. The window was then sealed using a glass coverslip secured with 

dental cement. After allowing 1 h for dye uptake, each injection resulted in a stained area of 

< 400 μm in diameter. For details on the awake experiments, see below.
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All procedures performed on mice were carried out in accordance with the ethical guidelines 

of the National Institutes of Health and approved by the institutional review board (IACUC 

Baylor College of Medicine).

Intrinsic optical imaging and visual area identification

We used stereotactic information to locate the primary visual cortex of the mouse (V1). In 

some experiments we additionally used intrinsic imaging as previously described39. We 

measured the change in cortical light reflectance with illumination wavelength of 610 nm. 

512 × 512 pixel images were captured at the rate of 4 Hz with a CMOS camera (MV1-

D1312-160-CL, PhotonFocus). For retinotopic mapping we stimulated with upward and 

rightward drifting white bars on black background (Frequency: 0.16 cycles/deg, Width: 2 

deg). Images were analyzed by a custom-written code in MATLAB. In brief, we extracted 

the phases of the fundamental Fourier component of each pixel. We then constructed the 2D 

phase maps for the two directions and the retinotopic maps were constructed as previously 

described39. We used published retinotopic maps40 to identify the location of the three areas 

V1, LM and AL.

Two-photon imaging and electrophysiology

We recorded calcium traces using a custom-built two-photon microscope equipped with a 

Chameleon Ti-Sapphire laser (Coherent) tuned at 800 nm and a 20x, 1.0 NA Olympus 

objective. Scanning was controlled by either a set of galvanometric mirrors (2D imaging) or 

a custom-built acousto-optic deflector system (AODs; 3D imaging)16. The average power 

output of the objective was kept at less than 50 mW for 2D imaging and 120 mW for 3D 

imaging for the L2/3 experiments and less than 100mW for the L4 experiments. Calcium 

activity was typically sampled at ~ 12 Hz with the galvanometric mirrors and at ~ 260 Hz 

(78 – 450 Hz) with the AODs. We recorded data from depths of 100–540 μm below the 

cortical surface. The border between L2/3 and L4 was assumed to be at 350μm41.

To perform simultaneous loose-patch and two-photon calcium imaging recordings we 

replaced sulforhodamine 101 with Alexa Fluor 594 (Invitrogen) and used glass pipettes with 

5–7 MΩ resistance for targeted two-photon-guided loose-cell patching as previously 

described42.

Awake experiments

Animal preparation was done as for anesthetized experiments. After the surgery the animal 

was removed from the anesthesia and was placed head-fixed on a spherical treadmill that 

allowed only single axis movements (forwards-backwards). We started the experiments once 

the animal was awake for at least 30 min and comfortably running on the ball. During the 

whole duration of the experiment the animal was monitored for any signs of discomfort and 

few drops of sugary water were delivered every ~ 30 min. All the awake recordings were 

done with the 2D imaging system. Whisking and eye movements were simultaneously 

monitored with one camera (CR-GM00-H6400, Teledyne Dalsa) and a high-dpi optical 

mouse (Deathadder, Razer) placed close to the ball detected the mouse movements. All the 

behavioral traces were recorded using a custom-written software in LabView (National 

Instruments).
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The pupil was detected using circular Hough transform (imfindcircles, MATLAB) and its 

location was extracted for each recorded frame. We analyzed only periods were the eye did 

not move significantly (< 0.15 mm of linear pupil displacement; Supplementary Fig. 7) to 

keep the trial-to-trial responses similar. We classified the trials into quiet and active states 

using whisker and animal movements (Supplementary Fig. 7). To detect the whisker 

movement we first extracted the optic flow (OpticalFlow Object, Computer Vision System 

Toolbox, MATLAB) and then computed the average magnitude of velocity for all the pixels 

within each frame. An active period was defined as a period where the animal was either 

whisking (> 1.25 μm/s), running (> 24 mm/s) or both. A quiet state period was defined as a 

period where the animal was not whisking (< 1 μm/s) or running (< 18 mm/s). If the running 

and whisking activity was between the upper and lower boundaries, the period was 

discarded. Only sessions that had 10 or more trials with either whisking or running periods 

were included in the analysis.

Stimulus preparation and visual stimulation

Natural movies were acquired by a modified web camera (LifeCam VX-6000, Microsoft) 

mounted on the head of a mouse. The mouse was left to run freely in an enriched and 

spacious (~ 0.5 m2) environment. We used parts of the movie where the mouse was active, 

which contained periods of moving, looking around and resting. These movies thus included 

head and body movements but not eye movements of the mice. We converted the movies to 

grayscale and from those created new movies without higher-order correlations (phase 

scrambled movies) by randomizing the original natural phase spectrum using a 3D FFT, 

while preserving its complex conjugate symmetry. The randomization across the 3D space 

ensured that both spatial and temporal 1st and 2nd order statistics were equal between the 

two classes of stimuli, whereas both the spatial and temporal higher order correlations were 

randomized. Preserving the temporal 1st and 2nd order statistics led to the temporal 

smoothness necessary for the perception of stimulus continuity.

The natural movies used in this study did not include any compensatory eye movements, and 

thus might include motion that the animal would not experience in natural viewing 

conditions. Since we could not monitor the movements of the eye during video acquisition, 

we used a rendered virtual reality movie from Wallace et al.21 as a control analysis. This 

movie takes into account the eye movements of a rat. Additionally, to alleviate the effect of 

the artificial properties of the rendered movie, we created three “naturalistic” movies by 

extracting the 3D motion vectors of the virtual reality movie (imregister, MATLAB) and 

applied it to three different natural images.

Stimulus presentation routines were written in MATLAB using the Psychophysics 

Toolbox43 and the experiment was controlled by a custom state system written in LabView. 

Multiple segments of the movies (10 s, 30 fps) were presented on either a 20″ LCD monitor 

(2007WFPb, Dell, 60Hz refresh rate) or a 30″ LCD monitor (U3011t, Dell, 60Hz refresh 

rate) with their default gamma curves, positioned ~ 30 cm away from the animal’s eye, 

covering between 71 and 94 degrees in the azimuth and between 48 and 67 degrees in the 

elevation, respectively. We presented at least two different movie segments in each session 

for the anesthetized experiments and at least one movie for the awake experiments. Each 
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unique movie segment was presented monocularly between 6 and 30 times for the 

anesthetized experiments and between 10 and 28 times for the awake experiments.

Preprocessing

For data from the galvanometric scanning system, we performed motion compensation 

across the horizontal plane. Cell detection was done by a fully automated custom-written 

code in MATLAB that detects circular blobs within a specific parameter set of minimum 

diameter, cell contrast, edge sharpness and maximum number of cells per site. For data from 

the AOD system we used online motion detection16 and sessions with excessive motion 

(session with frequent periods where movement exceeded 5μm) were aborted. The data 

processing chain for this analysis was built using the DataJoint library for MATLAB (http://

datajoint.github.com/datajoint-matlab/). Individual cell traces were computed as the average 

of the cell ROI. For data from the AOD system individual cell traces were computed from a 

single point in the center of the cell. Calcium signals were normalized to ΔF/F, down-

sampled to 10–20 Hz and then filtered by using a non-negative deconvolution algorithm44. 

We assessed the quality of the reconstruction as previously described16. For this analysis we 

only included cells that were recording with both 2D and 3D imaging systems (n = 16 

neurons). Reconstruction of the spike rate is generally very good (Fig 1c; 500 ms time bin; 

R=0.79, averaged across both systems).

Receptive field mapping and population response prediction

In some experiments we mapped the location and size of the receptive fields of the neurons 

using black and white squares that each covered ~6° of the visual field. The squares were 

presented across the entire range of the monitor in random order for 250 ms each. To map 

the receptive fields of individual neurons we averaged the first 500 ms of the activity of a 

cell across all repetitions of the stimulus for each location. We fit the resulting 2D map using 

an elliptic 2D Gaussian. For each neuron we computed the SNR as the ratio of the variance 

of this image within three SD of the receptive field center to the variance of the image 

outside of the three SD of the receptive field center. Well-defined receptive fields with SNR 

> 1 had a median size of 11±7° (n=5193 neurons) and their locations covered a standard 

deviation of 10° across the visual field of each recording session. We computed population 

receptive fields by averaging the receptive fields of the neurons with SNR > 1. We again fit 

a 2D Gaussian and took the two-SD ellipse as the population receptive field to ensure we 

capture the almost all of the area that the neurons respond to.

To identify which features of the natural stimulus were most important for driving the neural 

responses, we computed four image statistics for each frame of the movie within the 

population receptive field and across the whole image: (1) Average pixel intensity, (2) 

Standard deviation of the pixel intensities (contrast), (3) Kurtosis of the pixel intensities, (4) 

Velocity of the global motion vector (OpticalFlow Object, Computer Vision System 

Toolbox, MATLAB). We used a linear regression model and leave-one-out cross-validation 

to estimate the weights of these features on both the individual cell responses and the 

population responses. For this analysis we only included sessions with four or more unique 

natural movies (n = 21 sites).
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Measures of population activity

(1) Mean was measured across the entire presentation of a movie and then averaged across 

all neurons from a given site. (2) Variance was measured across the trials and then averaged 

across all neurons from a given site. (3) Signal correlations were measured as the Pearson 

correlation between the average response traces. (4) The reliability of each cell was defined 

as the variance of the average response across trials divided by the total variance across all 

responses. (5) Sparseness was computed using the definition of Vinje and Gallant8

For lifetime sparseness, ri is the response to the ith frame of a movie averaged across trials 

and N is the number of movie frames. Lifetime sparseness was highly correlated with the 

peak rate of the neurons across sites (r=0.82). For population sparseness, ri is the response of 

the ith neuron in a site to a certain movie frame averaged across trials, and N is the number 

of neurons. This measure of population sparseness is sensitive to the binning size but not the 

population size (Supplementary Fig 1). Population sparseness was averaged across movie 

frames and lifetime sparseness was averaged across neurons. Spherical variance was 

measured as

where  is the population response vector in response to movie frame i, averaged across 

trials. For all measures, the statistics were done over sites after averaging within each site 

and we report the median and 95% bootstrap confidence intervals with 5000 resamples 

unless otherwise stated.

Decoding and discriminability

We used the optimal linear classifier assuming isotropic covariance matrices and leave-one-

out cross-validation to estimate the decoding error between the neural representations of 

pairs of 500 ms scenes45,46. Each scene was represented as an N-dimensional vector of 

neural activity for each trial. We converted the decoding error to discriminability, the mutual 

information (measured in bits) between the true class label c and its estimate ĉ, by 

computing

where pi j is the probability of observing true class i and predicted class j and pi· and p·j 

denote the respective marginal probabilities.
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Regression analysis

We used a linear regression model to predict the difference in classification performance 

between natural and phase-scrambled scenes across sites from the differences in mean, 

variance, signal correlations, reliability, lifetime sparseness and population sparseness. 

Before fitting, the regressors were standardized. We show the total contribution towards 

explaining the average difference in decoding performance, i.e. the product between the 

estimated coefficient and the average of the factor difference biΔxi, normalized to a total 

effect size of 1. Error bars shown are the standard errors of the coefficients in the linear 

regression model scaled by the mean difference Δx.

Locally linear embedding

In order to graphically illustrate the dispersion of the neural responses to the two classes of 

stimuli, we used local linear embedding to embed the high-dimensional neural 

representations of 500 ms scenes into a low-dimensional subspace22. This technique takes 

into account local neighborhood relationships in the original space and tries to preserve them 

in the low-dimensional space. In brief, the first step is to identify the k nearest neighbors in 

the full activity space, the second is to reconstruct the neighbor relationships with some 

linear weights by taking into account the local covariance structure and the third step 

consists of computing the embedding coordinates in the reduced space by using the weights 

from the previous step. We first averaged the responses across neurons and then convolved 

the data with a one second Gaussian window in time to reduce noise. To ensure the 

reduction of space is equal for the responses to the two classes of stimuli, we performed the 

local linear embedding simultaneously for the response vectors to both natural and phase-

scrambled movies. As parameters for the algorithm, we used 12 neighbors and obtained 3 

output dimensions. For visualization, we sampled the embedded trace every 50 ms using 

cubic spline interpolation.

V1 model

For the V1 model, we used the filter responses to a set of 143 localized and oriented filters 

obtained with Independent Component Analysis (ICA) on 12×12 patches randomly sampled 

from natural images from the van Hateren database47 using techniques previously 

described23 (143 because the DC component filter was excluded). A copy of the filter 

responses was sign-flipped and combined with the original responses. This duplication was 

done to preserve the full information about the image, as the resulting responses of this 

population of 286 neurons were half-wave rectified (Model 1). For the adaptive model, the 

slope of the linear part was adjusted to match the means between phase-scrambled and 

natural image patches (Model 2). For the divisive normalization model (Model 3), each 

rectified filter response xi was transformed by . The constant σ was set to the 

0.5% percentile of the raw filter responses to the natural image patches. All the resulting 

responses were scaled to obtain discrimination performances matching the in-vivo data. We 

used these responses as rates to draw spike counts from a Poisson distribution (20 trials). To 

obtain a similar processing procedure with the in vivo data, the simulated data was split into 

200 sets of responses to 100 unique image patches and the averages for all the measures 

were included in the analysis (200 data points for each measure).

Froudarakis et al. Page 13

Nat Neurosci. Author manuscript; available in PMC 2014 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Derivation of relation between sparseness and angle

θ: Angle from the diagonal

d: Diagonal

n: Number of neurons

x: Population Response

S: Population Sparseness

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental setup and example session
A. Illustration of the stimuli. Top, selected frames from a natural movie recorded from the 

viewpoint of a mouse using a MouseCam. Bottom, selected frames of the phase-scrambled 

movie, obtained by removing the higher-order correlations from the natural movie. First- 

and second-order correlations are matched between both stimulus types.

B. Example session of 3D AOD two-photon recordings with 139 neurons. Grey balls 

indicate the position of the cell bodies. The activity of green neurons is shown in D. The 
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spikes of the red neuron were recorded simultaneously using a patch pipette and are shown 

in C.

C. Reconstruction quality of the spike rate from Calcium signals. From top to bottom: dF/F, 

spike rate inferred using nonnegative deconvolution, measured spike rate using patching and 

a scatter plot of true vs. inferred rate with linear regression line (grey) for the red example 

neuron indicated in B. Bottom right: box plot of correlation of true vs. inferred rate for the 

same sample of 16 neurons imaged with 2D or 3D imaging (red line: median; black box: 

25th and 75th percentile; whiskers: range).

D. Responses of the population of neurons shown in B (green neurons) for both stimulus 

types. Shown are responses of 20/139 cells, and 8 trials each.
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Figure 2. Image features contributing to population activation in V1
A. Population receptive fields from 16 sites recorded in a single animal superimposed on the 

screen. Different colors indicate different sites.

B. The population responses to one movie for the 16 sites shown in A.

C. Scatter plot of the linear correlation coefficients between the population responses of all 

pairs of sites shown in A. vs. their center to center distance in degrees (N = 120 pairs). The 

regression line is shown in gray.

D. Population responses and image statistics. The mean, contrast, kurtosis and motion of the 

movie for one example session evaluated within the population receptive field (blue, red, 

green and purple respectively) are plotted on top of the population response to that movie 

(gray).

E. A linear regression model from the image statistics from D can explain part of the 

population response. The population activity is partially followed by the predicted activity of 

the linear regression model (gray and yellow, respectively).

F. Boxplot of Variance Explained of a linear regression model (N=21 sites with at least 4 

different movies; red line: median; black box: 25th and 75th percentile; whiskers: range), 

using the image statistics within the population receptive field of natural and phase 
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scrambled images for predicting the activity of either the individual cell responses (Cell 

Activity) or the population response (Pop. Activity).

G. Average weights of the regression model for the four image properties within the 

population receptive field of the two classes of stimuli (Nat, Phs) and the population 

response (N=21 sites, ±1SEM).
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Figure 3. Higher order correlations in natural images change population structure
A. Mean measures of population activity (± 1SEM; n = 315 sites in layer 2/3 under 

anesthesia). Note the separate axis on the left and the right.

B. Median change in measures of population activity between stimulation with natural and 

phase scrambled movies separately for L4 (n = 46 sites) and L2/3 (n = 315 sites) of V1 and 

L2/3 of the secondary visual areas LM and AL (n =117 sites; blue, red and green, 

respectively). Positive values indicate that the measure is higher under stimulation with 

natural movies. Error bars encompass the 95%-confidence intervals of the median.

C. Scatter plot of population sparseness for stimulation with natural and phase-scrambled 

movies. Inset shows histogram of absolute change with red bar indicating the mean 

difference (*p < 0.001, bootstrap).
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D. Median change in measures of population activity between stimulation with natural and 

phase scrambled movies separately for 2D and 3D imaging (n = 332 sites for 2D imaging 

shown in blue; 30 sites for 3D imaging shown in red) and single neuron recordings (green; 

29 cells). Pairwise signal correlations and population sparseness could not be evaluated for 

single neuron activity. Positive values indicate that the measure is higher under stimulation 

with natural movies. Error bars encompass the 95%-confidence intervals of the median.
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Figure 4. The population representation of natural movie scenes is easier to discriminate
A. Discriminability between pairs of scenes from natural movies and phase scrambled 

movies based on the population response (n = 362 sites). Inset shows histogram of absolute 

change with red bar indicating the mean difference (*p < 0.001, bootstrap).

B. Contributions of the change in different measures of the population structure towards 

predicting the average change in classification performance between natural and phase 

scrambled movies. Error bars show standard error for the regression coefficients scaled by 

the mean difference.

C. Low-dimensional representation of a 22-dimensional neural activity space from the 

responses of one site to natural and phase scrambled stimuli, illustrating how spread out the 

representation of different movie scenes in the reduced space.

D. Scatter plot of the difference in the spherical variance of each site between the natural 

and the phase scrambled stimuli, compared to the difference in the average population 

sparseness of each site between the two stimulus conditions.

E. Illustration of the geometrical intuition behind the relationship between population 

sparseness and classification performance: population sparseness measures the average sin2 

of the angle between the main diagonal and the population response vector
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Figure 5. A sparse coding model with normalization is consistent with the results
A. Schematic of three LNP models used to generate the simulated responses. The initial 

linear filtering is the same for all (see methods). For Model 1, the filter output is rectified 

and used as a rate to generate Poisson spiking. An adaptive non-linearity is assumed that is 

adjusted to match the mean activity between the two classes for Model 2, and a 

normalization stage for Model 3.

B. Median change in average activity, population sparseness and discriminability in the 

sparse coding model (286 model neurons) for Model 1, Model 2 and Model 3 (purple, green 

and yellow, respectively) and the in vivo results (gray). Error bars encompass the 95%-

confidence intervals of the median.
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Figure 6. Active but not quiet wakefulness resemble anesthetized state
A. Mean measures of population activity for the responses to phase scrambled and natural 

stimuli (light and dark shading respectively) in the active (n = 23 sites) and quiet states (n = 

100 sites) of awake animals (purple and green respectively; ± 1 SEM). Note the separate 

axis on the left and the right.

B. Median change in measures of population activity between stimulation with natural and 

phase scrambled movies separately for the anesthetized, active and quiet state of the animal 

(gray, purple and green, respectively). Positive values indicate that the measure is higher 

under stimulation with natural movies. Error bars encompass the 95%-confidence intervals 

of the median.

C. Discriminability between pairs of scenes from natural movies and phase scrambled 

movies based on the population response for the active and awake states (purple and green 

respectively). Inset shows histogram of absolute change with the colored bar indicating their 

mean difference.

D. Contributions of the change in different measures of the population structure towards 

predicting the average change in classification performance between natural and phase 

scrambled movies for the two awake states. Error bars show standard error for the regression 

coefficients scaled by the mean difference.
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